Text Clusters Labeling using WordNet and Term Frequency- Inverse Document Frequency
نویسندگان
چکیده
Cluster Labeling is the process of assigning appropriate and well descriptive titles to text documents. The most suitable label not only explains the central theme of a particular cluster but also provides a means to differentiate it from other clusters in an efficient way. In this paper we proposed a technique for cluster labeling which assigns a generic label to a cluster that may or may not be a part of the text document cluster. It finds the theme of a document and designates it as its label. We used Term Frequency and Inverse Document frequency at baseline for tf-idf, with the Term Frequency calculation refined by using a thesaurus. WordNet was used as an external resource for hypernym generation of the terms having the K-Highest tf-idf. The hypernyms with the highest frequency are then taken as the label of the cluster. The details of the datasets used for experimentation and the comparative results with existing methods are provided in the paper, and clearly reflects the meaningful outcome of our technique.
منابع مشابه
Web Information Retrieval using WordNet
Information retrieval (IR) is the area of study concerned with searching documents or information within documents. The user describes information needs with a query which consists of a number of words. Finding weight of a query term is useful to determine the importance of a query. Calculating term importance is fundamental aspect of most information retrieval approaches and it is traditionall...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملText Clustering using Semantic Terms
In traditional text clustering, documents appear terms frequency without considering the semantic information of each document (i.e., vector model). The property of vector model may be incorrectly classified documents into different clusters when documents of same cluster lack the shared terms. Recently, to overcome this problem uses knowledge based approaches. However, these approaches have an...
متن کاملArabic News Articles Classification Using Vectorized-Cosine Based on Seed Documents
Besides for its own merits, text classification (TC) has become a cornerstone in many applications. Work presented here is part of and a pre-requisite for a project we have overtaken to create a corpus for the Arabic text process. It is an attempt to create modules automatically that would help speed up the process of classification for any text categorization task. It also serves as a tool for...
متن کاملBig Text Data Clustering using Class Labels and Semantic Feature Based on Hadoop of Cloud Computing
Clustering of class labels can be generated automatically, which is much lower quality than labels specified by human. If the class labels for clustering are provided, the clustering is more effective. In classic document clustering based on vector model, documents appear terms frequency without considering the semantic information of each document. The property of vector model may be incorrect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017